CBD – The Science

How Does CBD Work?

The human nervous system contains a large number of receptors. Receptors are like mobile telephone masts transmitting signals. But if a mobile mast accepts an electromagnetic wave as a signal, receptors use specific molecules to transmit messages.

One of the receptor systems is the so-called endocannabinoid system (ECS). ECS receptors are located in the human brain and in the peripheral nervous system – spinal cord and nerves. In the brain, the receptors reside in areas responsible for perception, concentration, memory and movement. That’s why the ECS is involved in the regulation of many physiological processes including the feeling of pain, mood, and appetite. Interestingly, the ECS is also a part of in neural system response to physical excise. “Runner’s high” is caused by ECS action.

The ECS receptors are CB1 and CB2, 5-HT1A, μ, and δ. The receptors bind cannabinoid-like molecules produced by the nervous system, endorphins. One of the endorphin molecules transmitting signals in the ECS is 2-Arachidonoylglycerol (2-AG). It binds to CB1 and CB2 receptors. Cannabidiol, CBD, also bind to these receptors and replicates the effects of 2-AG.

CBD binds to the same receptors as psychoactive THC but has an opposite effect. If THC gets your nervous system into overdrive CBD makes it slow down.


The wild Cannabis sativa plants produce a smorgasbord of organic compounds with THC and CBD among them. Just as other domesticated plants were selected to produce specific molecules in high quantities, Cannabis sativa has been selectively bred for different purposes. As a result of breeding, the original plant has been split into distinct cultivars with different qualities (think Brussel sprouts and cauliflower originated from wild brassica). Current “cannabis” cultivars focused on producing as much as possible of THC to the detriment of other useful compounds. On the other hand, “hemp” cultivars focused on the industrial use and bred it to produce high quantities of CBD at the detriment of THC.

Cannabinoids THC and CBD are closely related to plant-derived compounds terpenoids such as menthol, camphor, and curcuminoids from in turmeric and mustard seed. Terpenoids are a large class of organic molecules used extensively in traditional cuisine because of their aromatic qualities. They also play a prominent role in traditional herbal remedies.

THC and CBD are produced in the same biosynthesis pathway. In other words, they have the same precursor molecule, cannabigerolic acid, CBGA. When the precursor is available, an enzyme, THCS synthase makes an extra ether link and converts CBGA into THCA that after decarboxylation converts to THC. In the parallel pathway, CBDA synthase converts CBGA into CBD precursor, CBDA.